Newborn EEG connectivity analysis using time-frequency signal processing techniques
نویسنده
چکیده
.............................................................................................................................................. ii Declaration by author ....................................................................................................................... iv Publications during candidature ...................................................................................................... v Publications included in this thesis ................................................................................................. vii Peer-reviewed Journal Articles ....................................................................................................... vii Conference Articles ........................................................................................................................ viii Conference Abstract ......................................................................................................................... xi Contributions by others to the thesis.............................................................................................. xii Statement of parts of the thesis submitted to qualify for the award of another degree ........... xiii Acknowledgements.......................................................................................................................... xiv
منابع مشابه
A Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملNewborn EEG Seizure Detection Using Adaptive Time-Frequency Signal Processing
D ysfunction in the central nervous system of the neonate is often rst identi ed through seizures. The di culty in detecting clinical seizures, which involves the observation of physical manifestations characteristic to newborn seizure, has placed greater emphasis on the detection of newborn electroencephalographic (EEG) seizure. The high incidence of newborn seizure has resulted in considerabl...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملA methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals
This article presents a general methodology for processing non-stationary signals for the purpose of classification and localization. The methodology combines methods adapted from three complementary areas: time-frequency signal analysis, multichannel signal analysis and image processing. The latter three combine in a new methodology referred to as multichannel time-frequency image processing w...
متن کامل